Information Geometry

Normal family (univariate)

\[f_{\mu, \sigma} (x) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left( \frac{- (x-\mu)^2}{2 \sigma^2} \right),\; x \in \mathbb{R}.\]

1. Fisher geometry

\[G(\mu,\sigma) = \begin{bmatrix} \frac{1}{\sigma^2} & 0 \\ 0 & \frac{2}{\sigma^2} \end{bmatrix}\]

2. Information theory

\[D_\mathrm{KL} ( f_{\mu_1, \sigma_1} \| f_{\mu_2, \sigma_2} ) = \log\left(\frac{\sigma_2}{\sigma_1}\right) + \frac{1}{2} \left( \frac{\sigma_1^2}{\sigma_2^2} + \frac{(\mu_1 - \mu_2)^2}{\sigma_2^2} - 1 \right).\]

3. As exponential manifold

\[\varphi(\theta_1, \theta_2) = - \frac{\theta_1^2}{4 \theta_2} + \frac{1}{2}\log\left( \frac{-\pi}{\theta_2} \right)\]

4. As homogeneous manifold / Lie group

\[(\tilde\mu, \tilde\sigma) \cdot (\mu, \sigma) = (\tilde\sigma \mu + \tilde\mu, \tilde\sigma \sigma).\]

Sources

  1. S. I.R. Costa, S. A. Santos, J. E. Strapasson. Fisher information distance: A geometrical reading
  2. S. Amari, H. Nagoka. Methods of Information Geometry
  3. O. Calin, C. Udrişte. Geometric Modeling in Probability and Statistics